Search results for "Trivial topology"
showing 4 items of 4 documents
Dual attachment pairs in categorically-algebraic topology
2011
[EN] The paper is a continuation of our study on developing a new approach to (lattice-valued) topological structures, which relies on category theory and universal algebra, and which is called categorically-algebraic (catalg) topology. The new framework is used to build a topological setting, based in a catalg extension of the set-theoretic membership relation "e" called dual attachment, thereby dualizing the notion of attachment introduced by the authors earlier. Following the recent interest of the fuzzy community in topological systems of S. Vickers, we clarify completely relationships between these structures and (dual) attachment, showing that unlike the former, the latter have no inh…
On i-topological spaces: generalization of the concept of a topological space via ideals
2006
[EN] The aim of this paper is to generalize the structure of a topological space, preserving its certain topological properties. The main idea is to consider the union and intersection of sets modulo “small” sets which are defined via ideals. Developing the concept of an i-topological space and studying structures with compatible ideals, we are concerned to clarify the necessary and sufficient conditions for a new space to be homeomorphic, in some certain sense, to a topological space.
Population dynamics based on ladder bosonic operators
2021
Abstract We adopt an operatorial method, based on truncated bosons, to describe the dynamics of populations in a closed region with a non trivial topology. The main operator that includes the various mechanisms and interactions between the populations is the Hamiltonian, constructed with the density and transport operators. The whole evolution is derived from the Schrodinger equation, and the densities of the populations are retrieved from the normalized expected values of the density operators. We show that this approach is suitable for applications in very large domain, solving the computational issues that typically occur when using an Hamiltonian based on fermionic ladder operators.
Generalized fuzzy topology versus non-commutative topology
2011
The paper introduces a modification of the notions of generalized fuzzy topological space of Demirci and quantal space of Mulvey and Pelletier, suitable to explore interrelations between point-set lattice-theoretic topology and non-commutative topology developed in the framework of C^*-algebras or (more recently) of quantales. As a consequence of the new approach, a generalization of the concept of topological system of Vickers arises. Moreover, the currently dominating variable-basis topological setting in the fuzzy community, due to Rodabaugh, appears to be ''fixed-basis''.